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ABSTRACT

Target plays an essential role in stance detection of an opinionated

review/claim, since the stance expressed in the text often depends

on the target. In practice, we need to deal with targets unseen in the

annotated training data. As such, detecting stance for an unknown

or unseen target is an important research problem. This paper

presents a novel approach that automatically identifies and adapts

the target-dependent and target-independent roles that a word

plays with respect to a specific target in stance expressions, so as to

achieve cross-target stance detection. More concretely, we explore a

novel solution of constructing heterogeneous target-adaptive prag-

matics dependency graphs (TPDG) for each sentence towards a

given target. An in-target graph is constructed to produce inherent

pragmatics dependencies of words for a distinct target. In addition,

another cross-target graph is constructed to develop the versatility

of words across all targets for boosting the learning of dominant

word-level stance expressions available to an unknown target. A

novel graph-aware model with interactive Graphical Convolutional

Network (GCN) blocks is developed to derive the target-adaptive

graph representation of the context for stance detection. The ex-

perimental results on a number of benchmark datasets show that

our proposed model outperforms state-of-the-art methods in cross-

target stance detection.

CCS CONCEPTS

• Information systems→ Sentiment analysis; Clustering and clas-
sification.
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1 INTRODUCTION

Stance detection aims to identify people’s opinionated standpoint

or attitude (i.e. favor, against, or none etc.) expressed in text to-

wards a specific target [1, 9, 23, 25, 39]. Thanks in part to the avail-

ability of data sufficiently annotated with target-dependent stance

labels, previous methods achieved promising performance in target-

dependent stance detection when trained and tested on the same

dataset of targets [7, 18]. However, in practice, it is not possible to

enumerate all possible targets beforehand for training stance detec-

tion models. As such, there is an urgent need to learn a cross-target

stance classifier for targets with few or no labeled data.

To illustrate the task of cross-target stance detection, we show

examples in Figure 1 where the source and destination targets

are paired with their corresponding sentences and stance labels.

Suppose there is no annotated data for the destination target “Legal-
ization of Abortion”, i.e. “Legalization of Abortion” is unseen in the

training dataset. Cross-target stance detection aims to build stance

classifiers trained on features extracted from the context of source

targets which might be relevant to the destination targets, so as

to alleviate the sparsity or lack of annotated data for the stance

detection of destination targets.

Some recent studies have been adopted to address cross-target

stance detection [32, 34, 37]. These methods either leverage shared

features for stance detection of destination targets by way of mod-

eling the topical information with source targets [32, 34] or incor-

porate external knowledge between source and destination targets

https://doi.org/10.1145/3442381.3449790
https://doi.org/10.1145/3442381.3449790
https://doi.org/10.1145/3442381.3449790
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Sentence: Men don't have a right to talk over you, you are a goddess and 
don't deserve to be silenced

Stance: Favor

Sentence: Men are playing political football with women's right to have 
control over our bodies

Stance: Favor

Example 1

Sentence: We live in a sad world when wanting equality makes you a troll

Stance: Favor

Sentence: How about declaring and protecting equality for the unborn now

Stance: Against

Source target: Feminist Movement

Destination target: Legalization of Abortion

Example 2

Source target: Feminist Movement

Destination target: Legalization of Abortion

Figure 1: Examples paired with their targets and stance la-

bels. “Source target” denotes the target labeled in the train-

ing set, whereas “Destination target” denotes the target is

unseen in the training dataset but occurs in the test dataset.

into model learning [37]. Existing methods largely focused on ex-

tracting shared information across different targets. Moreover, they

only considered the contextual stance expressions in the anno-

tated target dataset. We argue that words may play different roles

when used in stance expressions for different targets. As such, it

is desirable to leverage fundamental word-level pragmatics depen-

dencies across all targets in order to improve performance of stance

detection of unknown targets.

As shown in Figure 1, in Example 1, noting that the stance expres-

sions relating to the word “equality” present the opposite stance
for the two targets. That is, directly employing the stance infor-

mation associated with the source target for the learning of stance

representations of the destination target may produce wrong re-

sults. The main reason is that the same word or expression may

signal different stances when associating with different targets.

Therefore, it is important to understand the word-level pragmatics

information and adapt it for different targets, which could lead to

the improved performance in cross-target stance detection. Here,

we regard the words (such as “equality”) whose inherent stances
are target-dependent as in-target words. Additionally, in Example

2, words with colors expressing the same stance regardless of the

targets associated with are regarded as target-independent stance

expressions. These words can effectively boost the performance of

stance detection for unknown targets. Correspondingly, we regard

these words as cross-target words. We argue that the main chal-

lenges in stance detection are to identify these two types of words

(in-target v.s. cross-target), and model the context features for

stance detection of targets based on different words types (target-

adaptive). Specifically, we develop our methodology based on the

following hypotheses:

• For words exclusively occurred in stance expressions for cer-

tain targets and always convey the same stance, modeling

and adapting these words for deriving pragmatics informa-

tion according to their associated targets could improve the

learning of stance representations.

• If the occurrence of words evenly distributes across differ-

ent targets, then the pragmatics dependencies formed by

these words should be target-independent and they will be

useful for generating stance representations for any targets

including unknown targets.

To better address cross-target stance detection, in this paper, we

propose a novel framework to leverage the fundamental word-level

pragmatics dependencies of stance expressions towards a target

by constructing target-adaptive heterogeneous (syntactic depen-

dency and pragmatics information) graphs from the in-target and

the cross-target perspectives. Utilizing the interactions between

different targets, the proposed framework can capture the stance in-

formationmore accurately and distill the knowledge under different

targets with better interpretability.

Specifically, 1) we first compute the target-specific pragmatics

weights at the word-level. Here, to capture the inherent role of

a word in stance expressions towards a target, we compute the

word’s relative occurrence frequency in the context of the target

in comparison with that of other targets. We then make use of the

stance information from the annotated training data to derive the

stance-related pragmatics weight for the word. We next construct

an in-target graph in which nodes are contextual words and edges

between nodes are determined by the pragmatics information and

dependency parsing results. The weight of the edge connecting

between contextual words is determined by the target-specific prag-

matics weight. 2) corresponding to produce target-specific prag-

matics weight for each word, we consider the distribution of each

word across different known targets to discern which words are the

clues for deriving stance expressions to different targets including

the unknown targets. Here, we still adopt the stance information

extracted from the annotated training data to compute the pragmat-

ics weight for each word across all the targets, and then each edge

of another pragmatics dependency graph is derived along with the

dependency three and the word-level pragmatics weight across the

targets (called cross-target graph).

To leverage both the in-target and cross-target pragmatics depen-

dencies of higher order neighborhoods in heterogeneous graphs,

we propose a graph-aware model with interactive GCN blocks to

capture the stance information towards a target and adapt the con-

text representations for the target of interest. That is, for each GCN

block, the information from neighbors of each node is aggregated to

generate the in-target graph embeddings by modeling the in-target

graph, and the cross-target graph is further utilized to enrich graph

embeddings learning and modify the target-adaptive contextual

stance representations. The main contributions of our work can be

summarized as follows:

• We are the first to study cross-target stance detection by

leveraging target-adaptive pragmatics dependencies of the

context based on both in-target and cross-target heteroge-

neous graphs. The word-level pragmatics information can be

decomposed into target-dependent and target-independent,

which can be subsequently adapted for the stance detection

of unknown targets.
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• A novel graph-aware model with interactive GCN blocks is

proposed to learn contextual graph representations, which

allows the learning of more accurate stance representations

for unknown targets.

• Experimental results on a number of benchmark datasets

demonstrate that our proposed method outperforms the

state-of-the-art models in cross-target stance detection.

2 RELATEDWORK

2.1 Stance Detection

Stance detection aims to detect the attitude of a context (e.g. com-

ment or review) according to the given target [6, 13, 17, 27], which

is critical to many scenarios such as argumentation mining [22],

fake news detection [12], fact checking [29] et al. In some previ-

ous studies, Du et al. [5] incorporated target-specific information

into stance classification with an attention-based model. Sun et al.

[26] exploited a hierarchical attention network to model the stance

expression from both context and target. Recently, with the develop-

ment of social media, more challenging version of stance detection

occur, where targets are not always mentioned and no training data

is available for the test targets. Thus cross-target stance classifica-

tion has attracted increasing attention due to the diversification

of social text and the limitation of features learning between dif-

ferent targets. Augenstein et al. [1] modeled the features for un-

known target by a bidirectional conditional LSTM encoding. Xu

et al. [34] proposed a self-attention based neural model to extract

the shared features learned from a source target to a destination tar-

get and improved the generalization in certain scenarios. To employ

transferable topic knowledge from source targets to destination tar-

gets, Wei and Mao [32] learned latent topics with neural variational

inference [16, 24] to enhance text representations and adopted ad-

versarial training technique to learn more target-invariant represen-

tations. Zhang et al. [37] employed external semantic and emotion

knowledge as a bridge to enable knowledge to transfer across dif-

ferent targets and enrich the representation learning of the text and

target. These works partially extract transferable stance features

from source targets to destination targets, while they always ignore

the learning of the most rudimentary word-level pragmatics depen-

dencies information across different targets. Since the word-level

pragmatics dependencies can perfect the text representation adapt

to the target via generalizing the stand expressions across different

targets at the principal pragmatics level.

2.2 Graph Neural Network

Graph neural networks (GNN) have attracted uptrend attention,

since the information in GNN can be propagated through a graph

structure rather than as a simple feature [33, 42]. Recently, graph

neural network-based models have achieved promising perfor-

mance in many NLP tasks, such as text classification [35, 41], sen-

timent analysis [30], fake news detection [15], neural machine

translation [36], Chinese NER [4, 8] et al. Correspondingly, graph

neural network is successfully used in many fine-grained targeted

text mining applications. For example, in aspect sentiment analy-

sis, Zhang et al. [38] integrated dependency tree into constructing

graphs for sentences and utilized graph convolutional networks

(GCN) to model the contextual syntactical information and word

Sentence

In-target graph Cross-target graph

Heterogeneous graphs

Embedding module

Interactive GCN blocks

GCN layers

GCN layers

Graph representation

LSTMs

Vector representation

Attention scores

Stance Representation

Interaction

Target

Figure 2: The architecture of the proposed target-adaptive

pragmatics dependency graph (TPDG) framework.

dependencies for the specific aspect. Tang et al. [28] proposed a

dependency graph enhanced dual-transformer network for aspect

sentiment analysis to support mutual reinforcement between the

flat representation learning and graph-based representation learn-

ing. Zhang et al. [40] proposed a extension of the graph convolu-

tional network which is tailored for relation extraction via encoding

the dependency structure over the input sentence based on depen-

dency tree. These studies presented the importance of the decent

initial weights of graphs. To leverage the target-adaptive semantic

dependencies of the sentence, inspired by the success achieved by

previous GCN-based methods [38, 40], we explore a novel solution

of constructing semantic dependency graph for each sentence and

propose a novel graph-ware model with interactive GCN blocks to

model the word-level semantic dependencies for deriving precise

stance expression from both in-target and cross-target perspective.

3 METHODOLOGY

In this section, we present our proposed Target-adaptive Pragmat-

ics Dependency Graph (TPDG) framework for cross-target stance

detection in details. We first define the task of cross-target stance

detection in Section 3.1, and then proceed to describe each of the

components of our proposed framework. As demonstrated in Fig-

ure 2, the architecture of the proposed TPDG framework contains

four main components: 1) vector representation, which derives the

word representations of the input context with bidirectional LSTM

layers (described in Section 3.2), 2) heterogeneous graphs construc-
tion, which constructs in-target and cross-target graphs and learn

target-adaptive pragmatics dependencies of the context from both

graphs (described in Section 3.3 and 3.4), 3) interactive GCN blocks,
which are designed to leverage the target-dependent and target-

independent contextual graph representations for a given target
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(described in Section 3.5), and 4) stance representation, which cap-

tures the crucial clues for stance detection and output the final

representation (described in Section 3.6).

3.1 Task Description

Given a collection set of annotated instances towards source targets

D𝑠 = {(𝑟 𝑖𝑠 , 𝑡𝑠 , 𝑦𝑖𝑠 )}
𝑁𝑠

𝑖=1
and a set of unlabeled instances towards

destination targets (there will be one or more destination targets)

D𝑑 = {(𝑟 𝑖
𝑑
, 𝑡𝑖
𝑑
)}𝑁𝑑

𝑖=1
, where 𝑦𝑖𝑠 is the stance label of an annotated

instance of the source target 𝑡𝑠 , 𝑁𝑠 and 𝑁𝑑 are the number of the

instances towards the source and destination targets, respectively.

The goal of cross-target stance detection is to model the stance

features of each sentence 𝑟 𝑖𝑠 towards the source target 𝑡𝑠 from D𝑠

and predict the stance label 𝑦𝑖
𝑑
of each sentence 𝑟 𝑖

𝑑
towards the

corresponding destination target 𝑡𝑖
𝑑
in D𝑑 .

3.2 Vector Representation

For a sentence consists of𝑛words 𝑟 = {𝑤𝑖 }𝑛𝑖=1, we embed eachword

in the sentence into an𝑚-dimensional embedding via mapping the

embedding 𝒙𝑖 ∈ R𝑚 from the lookup table 𝑿 ∈ R𝑚×|𝑽 | , 𝑽 is the

full vocabulary, |𝑽 | is the vocabulary size. Then we can obtain an

embedding matrix for each sentence 𝑟 , i.e. 𝒙 = [𝒙1, 𝒙2, · · · , 𝒙𝑛].
Subsequently, we utilize bidirectional LSTMs to encode the input

sentence into vector representations with embedding matrix:

−→
𝒉 𝑡 = LSTM(𝒙𝑡 ,

−→
𝒉 𝑡−1) (1)

←−
𝒉 𝑡 = LSTM(𝒙𝑡 ,

←−
𝒉 𝑡+1) (2)

𝒉𝑡 =
−→
𝒉 𝑡 ⊕

←−
𝒉 𝑡 (3)

where 𝒉𝑡 denotes the hidden vector representation of 𝒙𝑡 in time

step 𝑡 , ⊕ represents the concatenation.

3.3 Target-adaptive Pragmatics Weight

Computation

To understand and adapt the stance expression of the context with

respect to the target, a series of pivotal semantically-important

words that point at the target are discerned from the dataset, i.e.

these words either play distinct roles for distinct targets or dominate

the stance across all targets. Thereupon, we compute the pragmatics

weight for each word from two perspectives: 1) From the in-target

perspective, we would define the pragmatics weight of the word

based on the degree of pragmatics association between theword and

the target. That is, the word is assigned with distinctive pragmatics

weight for distinct target. 2) From the cross-target perspective, the

pragmatics weight of the word is determined by the pragmatics

frequency distribution across all targets. Here, a word with a large

weight indicates that it is semantically-rich and could be adopted

to derive target-adaptive stance expression for different targets.

There are many possible ways to derive pragmatics weights for

contextual words. Such as word frequency [35], cosine similarity

between words [14], external knowledge [37] et al. But they gener-

ally focus on the relations of the contextual words, which is unable

to distinguish the distinct role of different contextual words for

the target. In our work, we propose a novel approach to automati-

cally capture the weights for the words based on the pragmatics

information of annotated source target and the importance of word

occurrence in other unlabeled destination targets.

In-target Pragmatics Weight Computation. Based on the

times of each word appearing over the whole corpus, the pragmat-

ics weight for each word 𝑤𝑘 in 𝑽 adapting to the target can be

computed as:

𝝆𝐼 (𝑤𝑘 ) =
#D𝑠
(𝑤𝑘 )

#D𝑠
(𝑤𝑘 ) + #D𝑜

(𝑤𝑘 ) + 1
(4)

𝝎𝐼 (𝑤𝑘 ) =
𝝆𝐼 (𝑤𝑘 ) −min(𝝆𝐼 )
max(𝝆𝐼 ) −min(𝝆𝐼 )

× 𝝃 𝐼 (𝑤𝑘 ) (5)

where #D𝑠
(𝑤𝑘 ) is the times of 𝑤𝑘 occurs in the specific source

target dataset D𝑠 , #D𝑜
(𝑤𝑘 ) represents the times of 𝑤𝑘 occurs in

other target datasets D𝑜
1
. 𝝃 𝐼 (𝑤𝑘 ) represents the stance-related

weight of𝑤𝑘 :

𝜹𝐼 (𝑤𝑘 ) =
#Favor (𝑤𝑘 )
#FavorD𝑠

− #Against (𝑤𝑘 )
#AgainstD𝑠

(6)

𝝃 𝐼 (𝑤𝑘 ) = 1 +
��𝜹𝐼 (𝑤𝑘 )

��
max(

��𝜹𝐼 ��) (7)

where #Favor (𝑤𝑘 ) and #Against (𝑤𝑘 ) represent the times of𝑤𝑘 ap-

pearing in “favor” and “against” instances of source target dataset
respectively. #FavorD𝑠 and #AgainstD𝑠 denote the number of “fa-
vor” and “against” samples in the source target dataset respectively.

Here, to capture more semantically-rich information, we only con-

sider “favor” and “against” instances when deriving stance-related

weight. Since instances from these two labels contain more definite

pragmatics information.

Cross-target Pragmatics Weight Computation. pragmatics

information across different targets is significant to detect stance

for unknown target. Therefore, based on the in-target pragmatics

weight, we leverage the word occurrence information to compute

the cross-target pragmatics weight for each word:

𝝆𝐶 (𝑤𝑘 ) =
∑𝑁𝑇

𝑗=1
(#D𝑗

(𝑤𝑘 ))
𝑁𝑇 × (#D𝑚𝑎𝑥

(𝑤𝑘 ) − #D𝑚𝑖𝑛
(𝑤𝑘 ) + 1)

(8)

𝝎𝐶 (𝑤𝑘 ) =
𝝆𝐶 (𝑤𝑘 ) −min(𝝆𝐶 )
max(𝝆𝐶 ) −min(𝝆𝐶 )

× 𝝃 𝐼 (𝑤𝑘 ) (9)

where 𝑁𝑇 is the number of targets, #D𝑚𝑎𝑥
(𝑤𝑘 ) and #D𝑚𝑖𝑛

(𝑤𝑘 )
represent the dataset with the largest and the least number of𝑤𝑘

respectively. Because instances of destination unknown targets are

unlabeled, here, we only integrate the stance-related weight of the

source target into the computation of the cross-target pragmatics

weight.

In this way, we can obtain the pragmatics weight for each word

according to degree of contribution in different stance expressions

from both in-target and cross-target perspective.

3.4 Pragmatics Dependency Graphs

Construction

Based on the target-adaptive pragmatics weight learned above, this

section presents how we construct the heterogeneous pragmatics

1
Here D𝑜 represents all unlabeled data in the datasets, correspondingly it can also be

the destination target dataset, i.e. D𝑑 .

gaozhaoze
高亮文本

gaozhaoze
高亮文本
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dependency graphs of adjacency matrices for each sentence. Noting

that the graph can preserve global structure information of con-

textual words, our proposed method aims to emphasize the crucial

word relations and evade the inconsequential ones. That is, if both

words have optimistic pragmatics weights, their edge weight in

the graph will be large. Conversely, if one of the words has a very

small pragmatics weight, the weight of their edge would be vastly

reduced.

To develop the syntactical dependency, before integrating prag-

matics information, we first construct the graph for each sentence

over the dependency tree to capture the word dependencies of the

sentence
2
. Here, the adjacency matrix 𝑫 ∈ R𝑛×𝑛 for each sentence

can be derived from the dependency tree of the sentence T :

𝐷𝑖, 𝑗 =

{
1 if T (𝑤𝑖 ,𝑤 𝑗 )

0 otherwise

(10)

where T (𝑤𝑖 ,𝑤 𝑗 ) represents that𝑤𝑖 is connected to𝑤 𝑗 in the depen-

dency tree of the sentence. Here, inspired by previous GCN-based

methods, we simply assume that the dependencies between parents

and children nodes in the dependency parsing are symmetrical,

which is wildly accepted in GCN based methods [28, 38]. Thus we

construct the graph with undirected to enrich the dependency infor-

mation of the adjacency matrix, i.e. 𝐷𝑖, 𝑗 = 𝐷 𝑗,𝑖 , and following [11],

we also set a self-loop for each word, i.e. 𝐷𝑖,𝑖 = 1.

In-target Graph Construction. Here, we integrate the prag-

matics information learned from the in-target perspective into the

adjacency matrix derivation. The edge weight of each node pair of

the in-target graph adjacency matrix 𝑨𝐼 ∈ R𝑛×𝑛 for each sentence

can be obtained by:

𝐴𝐼
𝑖, 𝑗 = 𝐷𝑖, 𝑗 × (𝝎𝐼 (𝑤𝑖 ) + 𝝎𝐼 (𝑤 𝑗 )) (11)

In this way, the pragmatics information towards the target could

be integrated into the context representation via the in-target prag-

matics dependency graph structure.

Cross-target Graph Construction. Additionally, to harmo-

nize and refine the graph structure of each sentence for adapting

to different targets, we integrate the cross-target pragmatics in-

formation into producing the adjacency matrix 𝑨𝐶 ∈ R𝑛×𝑛 for

cross-target graph:

𝐴𝐶
𝑖,𝑗 = 𝐷𝑖, 𝑗 × (𝝎𝐶 (𝑤𝑖 ) + 𝝎𝐶 (𝑤 𝑗 )) (12)

Consequently, each sentence can derive two different graphs

(i.e. in-target and cross-target graph) according to the dependency

parsing results and the target-adaptive pragmatics information of

the context. Here, the in-target graph preserves and adapts the

pragmatics dependencies of the contextual words according to the

target. That is, even though for the unknown target, we can still

obtain a distinctive in-target graph towards the target. Besides, for

the cross-target graph, it harmonizes the target-adaptive pragmatics

information of words across all the targets. That is, the cross-target

graph could act on distinct targets to derive target-adaptive stance

expression, including the unknown target with no annotated data.

The procedure of generating the adjacency matrices of in-target

2
In this work, we use spaCy toolkit for generating dependency tree of the input

sentence: https://spacy.io/.

Algorithm 1: Deriving adjacency matrices of in-target and

cross-target graph for each sentence

Input: 𝑟 = {𝑤𝑖 }𝑛𝑖=1; T; 𝝎𝐼
; 𝝎𝐶

1 for 𝑖 = 1→ 𝑛; 𝑗 = 1→ 𝑛 do

2 ⊲ Producing the dependency graph

3 if T(𝑤𝑖 , 𝑤𝑗 ) or 𝑖 = 𝑗 then

4 𝐷𝑖,𝑗 ← 1

5 else

6 𝐷𝑖,𝑗 ← 0

7 ⊲ Deriving the in-target adjacency matrix

8 𝐴𝐼
𝑖,𝑗
← 𝐷𝑖,𝑗 × (𝝎𝐼 (𝑤𝑖 ) +𝝎𝐼 (𝑤𝑗 ))

9 ⊲ Deriving the cross-target adjacency matrix

10 𝐴𝐶
𝑖,𝑗
← 𝐷𝑖,𝑗 × (𝝎𝐶 (𝑤𝑖 ) +𝝎𝐶 (𝑤𝑗 ))

and cross-target pragmatics dependency graphs for each sentence

is depicted in Algorithm 1.

3.5 Interactive GCN Blocks

Based on the pragmatics dependency graphs learned over depen-

dency tree and target-adaptive pragmatics information, here we

discuss how to leverage the target-adaptive stance expressions to

the destination targets. For each interactive GCN block, an in-target

GCN layer and a cross-target GCN layer are assembled to interac-

tively and adaptively learn and adjust the target-adaptive graph

representations for stance detection. Each node in the 𝑙-th GCN

block is updated according to the hidden representations of its

neighborhoods according to the adjacency matrices of in-target

and cross-target graph, the process is defined as:

𝒇 𝑙 = ReLU( ˜𝑨𝐼𝒈𝑙−1𝑾𝑙
𝐼 + 𝒃

𝑙
𝐼 ) (13)

𝒈𝑙 = ReLU( ˜𝑨𝐶𝒇 𝑙𝑾𝑙
𝐶 + 𝒃

𝑙
𝐶 ) (14)

where 𝒈𝑙−1 is the hidden representation evolved from the preceding

GCN block.
˜𝑨 is a normalized symmetric adjacency matrix:

˜𝑨𝑖 = 𝑨𝑖/(𝑬𝑖 + 1) (15)

where 𝑬𝑖 =
∑𝑛

𝑗=1𝐴𝑖, 𝑗 is the degree of 𝑨𝑖 . Here, the original input

nodes of the first GCN block are derived from the vector repre-

sentations learned by bidirectional LSTM layers in Section 3.2, i.e.

𝒈0 = [𝒉1,𝒉2, · · · ,𝒉𝑛].

3.6 Stance Representations

For each instance, inspired by Zhang et al. [38], we adopt a retrieval-

based attention mechanism to capture significant stance features

based on the final graph representations learned by interactive

GCN blocks and the contextual vector representations derived from

bidirectional LSTM layers:

𝛼𝑡 =
exp(𝛽t)∑𝑛
𝑖=1 exp(𝛽𝑖 )

(16)

𝛽𝑡 =

𝑛∑
𝑖=1

𝒉⊤𝑡 𝒈
𝐿
𝑖 (17)

where ⊤ represents matrix transposition, 𝒈𝐿 is the final output

of GCN blocks. Then, the final stance representation of the input

https://spacy.io/
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instance is formulated as:

𝒓 =
𝑛∑
𝑖=1

𝛼𝑖𝒉𝑖 (18)

After that, we adopt a fully-connected layer with softmax normal-

ization to yield a probability distribution of stance representation:

𝒚̂ = softmax(𝑾𝑜 𝒓 + 𝒃𝑜 ) (19)

where 𝒚̂ ∈ R𝑑𝑝 is the predicted stance probability for the input

instance towards the target, 𝑑𝑝 is the dimensionality of stance

labels.𝑾𝑜 ∈ R𝑑𝑝×2𝑑ℎ and 𝒃𝑜 ∈ R𝑑𝑝 are parameters to be learned,

and 𝑑ℎ denotes the dimensionality of hidden representation.

3.7 Learning Objective

The objective of training the model is to minimize the cross-entropy

loss on the dataset of source target D𝑠 via the standard gradient

descent algorithm, the corresponding function is defined as:

min

Θ
L = −

𝑁𝑠∑
𝑖=1

𝑑𝑝∑
𝑗=1

𝑦
𝑗
𝑖
l𝑜𝑔𝑦 𝑗

𝑖
+ 𝜆 | |Θ| |2 (20)

where 𝒚𝑖 is the ground-truth stance label distribution of instance 𝑖 ,

𝒚̂𝑖 is the estimated distribution, Θ denotes all trainable parameters

of the model, 𝜆 represents the coefficient of 𝐿2 regularization term.

4 EXPERIMENTAL SETUP

4.1 Experimental Data

We conduct experiments on two benchmark datasets from SemEval-

2016 Task 6 [17] (Sem16) and a large-scale dataset of targeted stance

detection collected from Twitter [2] (Wt-wt). The statistics of the

experimental data are shown in Table 1.

Sem16. SemEval-2016 Task 6 contains a stance detection dataset

of stance-bearing tweets on different targets. Following the previous

cross-target stance detection studies [32, 34, 37], we select four

targets from the dataset: Feminist Movement (FM), Legalization of
Abortion (LA), Hillary Clinton (HC) and Donald Trump (DT), which
are categorized into two domains: Women’s Rights (FM, LA) and
American Politics (HC,DT). Each instance in Sem16 dataset could be

classified as favor, against or none. Following [37], we also extend

Sem16 dataset by adding an additional Trade Policy (TP) target as
the fifth target in American Politics domain. Following [32], we split

the labeled data of destination target to obtain development and

test set with 3:7.

Wt-wt. The largest available stance detection dataset so far,

which consists of 51,284 tweets in discussing mergers and acquisi-

tion operations between companies. Wt-wt contains 8 companies:

CVS Health (CVS), Aetna (AET), Cigna (CI), Express Scripts (ESRX),
Anthem (ANTM), Humana (HUM), Disney (DIS), and 21st Century
Fox (FOXA), which are categorized into two domains (industries),

i.e. Healthcare (CVS, AET, CI, ESRX, ANTM, and HUM) and Enter-
tainment (DIS and FOXA). Each sentence refers to an operation of

two companies and a stance label from support (corresponding to
favor when computing pragmatics weight), refute (corresponding
to against), comment or unrelated. Based on this, five targets (opera-

tions) are considered in the dataset, four in the Healthcare domain

Table 1: Statistics of the experimental data on different tar-

gets from Sem16 and Wt-wt dataset.

Sem16 FM LA HC DT TP
favor 268 167 163 148 333

against 511 544 565 299 452

none 170 222 256 260 460

total 949 933 984 707 1245

Wt-wt CVS_AET CI_ESRX ANTM_CI AET_HUM DIS_FOXA
support 2,469 773 970 1038 1413

refute 518 253 1969 1106 378

comment 5520 947 3098 2804 8495

unrelated 3115 554 5007 2949 7908

total 11622 2527 11622 7897 18194

(CVS_AET, CI_ESRX, ANTM_CI and AET_HUM) and one in the

Entertainment domain (DIS_FOXA). Here following [2], there is no

developmental set in Wt-wt dataset.

4.2 Evaluation Metrics

For Sem16 dataset, following [32], we perform mean value of Macro

F1-score for favor and against to measure the classification perfor-

mance of the models: Macro F1-score. In addition, following [34],

the average score of both the micro-averaged F1 (large classes

dominate) and the macro-averaged F1 (small classes dominate) is

computed as another evaluation metric to alleviate the imbalance of

targets in the dataset: 𝐹1𝑎𝑣𝑔 = (𝐹1𝑚𝑖𝑐𝑟𝑜 + 𝐹1𝑚𝑎𝑐𝑟𝑜 )/2. For Wt-wt

dataset, following [2], we utilize Macro F1-score for all labels to
measure the performance of the models for all targets.

4.3 Training Setup

The word embeddings are initialized with the pre-trained 300-

dimensional word vectors from GloVe [19]. The number of GCN

blocks is set to 3, which is the optimal depth in pilot experiments.

The dimensionality of hidden vector representations is set to 300.

The coefficient 𝜆 of 𝐿2 regularization is set to 10
−5
. Adam is utilized

as the optimizer with a learning rate of 10
−3

to train the model,

and the mini-batch size is 16. All the𝑾 and 𝒃 of network layers are

randomly initialized with uniform distribution
3
.

4.4 Comparison Models

We compare and evaluate our model with several strong related

works, summarized as follow:

• BiLSTM: Utilizing two bidirectional LSTMs to learn the

sentence and the target separately, and the hidden repre-

sentations from both directions are combined to predict the

stance label.

• textCNN-E: Extending TextCNN [10] to the cross-target

stance detection task, in which the word vector is repre-

sented as a 3D tensor by integrating the semantically and

emotionally related words.

• BiCond [1]: Adopting bidirectional conditional encoding

to learn both the sentence and the target representation for

detecting stance expression.

3
The source code of this work is released at https://github.com/HLT-HITSZ/TPDG

https://github.com/HLT-HITSZ/TPDG
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Table 2: Macro F1-score results of targeted stance detection on Sem16 and Wt-wt dataset. Best scores are in bold.

Model FM LA HC DT TP CVS_AET CI_ESRX ANTM_CI AET_HUM
BiLSTM 51.6 59.1 55.8 57.4 54.2 70.6 71.7 72.8 72.5

BiCond [1] 52.9 61.2 56.1 59.0 55.3 71.1 72.3 72.6 72.0

BERT [3] 59.0 63.1 61.3 57.9 60.7 73.6 73.2 76.6 75.5

CrossNet [34] 55.7 61.3 60.2 60.2 56.4 71.7 71.2 73.8 72.5

ATT-LSTM [31] 55.3 62.6 59.8 55.3 55.9 72.0 71.4 74.3 73.5

ASGCN [38] 58.7 63.2 61.0 58.7 59.5 72.2 72.9 75.1 74.3

TPDG (ours) 67.3 74.7 73.4 63.0 64.7 79.3 77.6 81.5 80.2

• MLP [20]: Taking TF-IDF representations and their cosine

similarity score of the sentence and target as input into a

multi-layer perceptron.

• ATT-LSTM [31]: Computing attention scores of a sentence

according to the specific target with attention-based LSTM.

This model achieves promising performance in aspect sen-

tence analysis.

• ASGCN: A variant of [38], which extracts syntactical infor-

mation and word dependencies toward a specific target by

GCN, but without position-aware transformation and target

masking. This is a remarkable graph-based model in aspect

sentiment analysis.

• TAN [5]: Combining bidirectional LSTM and target-specific

attention extractor over target-augmented embeddings for

stance detection.

• HAN: Extending [26] to leverage the target-dependent con-

textual representation along with linguistic information by

hierarchical attention network.

• CrossNet [34]: Adopting a self-attention layer to extract

important contextual words toward the target in learning

target-specific stance features.

• SiamNet [21]: A stance detection system which comprises

of siamese adaptation of LSTM networks augmented with

an attention mechanism to capture the semantic differences.

• VTN [32]: Leveraging shared latent topics between source

and destination target as transferable knowledge to facilitate

model adaptation of cross-target stance detection.

• SEKT [37]: A knowledge-based GCN model, which incor-

porates semantic-emotion knowledge into heterogeneous

graph construction to bridge the gap between the source and

destination target for cross-target stance detection.

• BERT [3]: The vanilla pre-trained uncased BERT-basemodel,

which is a powerful pre-trained model in many NLP tasks

and adopts “[CLS] target [SEP] sentence [SEP]” as input for

each instance.

• TPDG: The complete model of our proposed target-adaptive

pragmatics dependency graph network.

5 EXPERIMENTAL RESULTS

This section presents how models perform on stance detection. In

Section 5.1, we first approximately demonstrate the comparison

results in targeted stance detection (i.e. train and test on the same

target). Subsequently, we focus on the stance detection for unknown

targets in Section 5.2. Section 5.3 analyzes the generalizability of

our proposed model across all the targets. Section 5.4 shows an

ablation study of our proposed model. Afterwards, we analyze the

impact of pragmatics words (in Section 5.5), destination target data

size (in Section 5.6) and GCN blocks (in Section 5.7) of our proposed

model. Finally, Section 5.8 presents a case study.

5.1 Results of Targeted Stance Detection

Table 2 shows the stratified 10-fold cross-validation comparison

results in targeted stance detection with several remarkable mod-

els, including neural network-based models (BiLSTM and BiCond),

pre-trained model (BERT), attention-based models (CrossNet and

ATT-LSTM ), and graph-based model (ASGCN). We can observe

that our proposed model achieves the best performance over all

targets on all datasets. Specifically, the best improvement are 12.1%

on HC target from Sem16 dataset and 5.7% on CVS_AET target

from Wt-wt dataset. This demonstrates that our proposed model,

which leveraging target-adaptive pragmatics dependencies by fun-

damentally identifying and adapting the stance expression for the

distinct target with a graph-aware model, outstandingly improves

the performance of stance detection in a more simple targeted

stance detection task.

5.2 Results of Cross-target Stance Detection

Cross-target Stance Detection on Sem16. Table 3 shows the

comparison results over 8 cross-target tasks on Sem16 dataset. We

can see that, compared with targeted stance detection, all the previ-

ous models achieve inferior performance on all cross-target tasks,

which demonstrates the challenge of cross-target stance detection.

It is observed that our proposed model (TPDG) consistently out-

performs all comparison models on all cross-target tasks. Among

them, the best improvement of F1-score and 𝐹1𝑎𝑣𝑔 are 19.2% and

17.4% on HC→TP, which explicitly verifies the tremendous superi-

ority of our proposed model in cross-target stance detection. Owing

to the limitation of unknown destination target information, BiL-

STM, BiCond and TextCNN-E overall perform worst since they

neither leverage target-specific contextual information nor learn

transferable knowledge for the destination target. Analogously,

BERT can leverage rich semantic information, but it still produces

a poor performance because of the ignorance of target-adaptive

stance expressions for the unknown target. Comparatively, mod-

els that considering target information (ATT-LSTM and ASGCN)

perform slightly better, since they explicitly incorporate the target

information into the sentence representation. Among them, AS-

GCN evidently performs better than ATT-LSTM, which implies

the latent superiority of graph-based model in stance detection.

Additionally, appreciable performance is achieved by models that
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Table 3: Experimental results of cross-target stance detection on Sem16 dataset. FM→LA represents training on FM (source

target) and testing on LA (destination target), etc. The results with ♮ are retrieved from [37].

Model

FM→LA LA→FM HC→DT DT→HC HC→TP TP→HC DT→TP TP→DT
F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔 F1-score 𝐹1𝑎𝑣𝑔

BiLSTM♮ 44.8 40.1 41.2 37.9 29.8 43.3 35.8 40.1 29.1 23.6 39.5 41.8 31.1 20.7 34.1 38.9

BiCond [1]♮ 45.0 40.3 41.6 39.2 29.7 44.2 35.8 40.8 29.2 23.9 40.2 42.4 31.7 20.7 34.7 39.6

TextCNN-E [10]♮ 46.9 51.3 45.8 46.6 38.0 36.0 40.4 38.5 30.9 28.3 45.0 47.2 35.6 19.1 39.6 43.3

BERT [3]♮ 47.9 49.9 33.9 39.5 43.6 41.2 36.5 39.9 26.1 35.3 23.1 29.5 24.1 39.1 45.6 47.8

ATT-LSTM [31] 42.2 43.4 41.3 41.4 31.2 43.7 35.5 40.2 30.6 25.3 42.7 43.8 31.5 23.8 39.8 42.1

ASGCN [38] 46.9 48.7 50.8 47.9 47.2 46.5 43.0 48.2 40.3 41.0 45.6 47.9 46.2 40.7 40.3 42.8

CrossNet [34]♮ 45.4 44.2 43.3 43.1 43.1 46.1 36.2 41.8 29.8 24.4 41.7 42.5 31.4 21.1 37.4 40.7

VTN [32]♮ 47.3 - 47.8 - 47.9 - 36.4 - - - - - - - - -

SEKT [37]♮ 53.6 52.3 51.3 51.0 47.7 46.3 42.0 43.2 33.5 30.0 46.0 48.9 44.4 39.1 39.5 43.5

TPDG (ours) 58.3 62.4 54.1 55.9 50.4 51.0 52.9 57.6 59.5 58.4 49.8 54.5 51.2 51.0 48.9 50.4

Table 4: Experimental results of cross-target stance detection on Wt-wt dataset. 𝑎𝑣𝑔𝐹1 and 𝑎𝑣𝑔𝑤𝐹1 represent the unweighted

and weighted (by operations size) average of all targets. acc. denotes average accuracy of each label. 𝑎𝑣𝑔3 denotes average

accuracy of 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , 𝑟𝑒 𝑓 𝑢𝑡𝑒, 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 , 𝑎𝑣𝑔4 denotes average accuracy of all four labels. The results with ♮ are retrieved from [2].

Model CVS_AET CI_ESRX ANTM_CI AET_HUM 𝑎𝑣𝑔𝐹1 𝑎𝑣𝑔𝑤𝐹1 𝑠𝑢𝑝 (acc.) 𝑟𝑒 𝑓 (acc.) 𝑐𝑜𝑚 (acc.) 𝑢𝑛𝑟 (acc.) 𝑎𝑣𝑔3 (acc.) 𝑎𝑣𝑔4 (acc.)

MLP [20]
♮

46.5 46.6 57.6 59.7 52.6 52.7 55.7 40.3 48.6 68.1 48.2 53.2

TextCNN-E [10] 46.5 39.8 56.3 59.5 50.5 52.4 62.7 37.4 31.3 71.2 43.8 50.7

BiLSTM 50.2 49.7 61.3 60.8 55.5 56.5 61.6 46.8 44.6 79.4 51.0 58.1

BiCond [1]
♮

56.5 52.5 64.9 63.0 59.2 60.1 61.0 48.7 45.1 79.9 51.6 58.7

BERT [3] 56.0 60.5 67.1 67.3 62.7 62.8 65.4 56.1 58.0 70.1 59.8 62.4

ATT-LSTM [31] 58.2 53.0 64.6 63.0 59.7 61.1 51.1 54.2 57.2 67.1 54.2 57.4

ASGCN [38] 59.2 54.7 66.3 65.3 61.4 62.7 66.3 49.5 51.3 76.8 55.7 61.0

CrossNet [34]
♮

59.1 54.5 65.1 62.3 60.2 61.1 63.8 48.9 50.5 75.8 54.4 59.8

SiamNet [21]
♮

58.3 54.4 68.7 67.7 62.2 63.1 67.0 48.0 52.5 78.3 55.8 61.5

TAN [5]
♮

56.0 55.9 66.2 66.7 61.2 61.3 66.1 49.0 51.7 74.1 55.6 60.2

HAN [26]
♮

56.4 57.3 66.0 67.3 61.7 61.7 67.6 52.0 55.2 69.1 58.3 61.0

TPDG (ours) 66.8 65.6 74.2 73.1 69.8 70.7 69.7 64.9 69.8 76.9 68.1 70.3

extracting shared stance information for the destination targets

(CrossNet, VTN and SEKT). Compared with the previous compara-

tively promising models (ASGCN and SEKT), our proposed model

yields outstandingly better performance. This indicates that simply

modeling transferable in-target stance information for destination

target is insufficient in stance detection for a target without an-

notated data, while our TPDG model can leverage the significant

stance expression for distinct target and improving cross-target

stance detection by means of employing word-level target-adaptive

pragmatics dependencies of the context.

Cross-target Stance Detection on Wt-wt. To demonstrate

the robustness of our proposed model in cross-target stance detec-

tion, following [2], we test on the unknown destination target while

train on the other three targets in Healthcare domain from Wt-wt

dataset. The results are reported in Table 4. We can observe that

except to the average accuracy of the unrelated label, our proposed
model also achieves tremendously better performance than all the

baselines. Among them, compared with previous promising graph-

based model (ASGCN), our proposed model improves 8.4% on 𝑎𝑣𝑔𝐹1

and 8.0% on 𝑎𝑣𝑔𝑤𝐹1, which verifies that leveraging target-adaptive

pragmatics dependencies in graph model could potentially lead

to improved cross-target stance detection results. Compared with

previous noteworthy cross-target model (SiamNet), our proposed

model improves 7.6% on both 𝑎𝑣𝑔𝐹1 and 𝑎𝑣𝑔𝑤𝐹1, which further

demonstrates the significant role of leveraging target-adaptive prag-

matics information from both in-target and cross-target perspective

in cross-target stance detection. Additionally, noting that our pro-

posed model achieves superior and more balanced accuracy across

all the labels. This implies that our proposed model, which identi-

fies and modifies the target-adaptive pragmatics information with

interactive GCN blocks, could potentially lead to the improved

identification of different stance labels.

Cross-domain Stance Detection. Intuitively, stance expres-

sions across targets in the same domain could be shared conve-

niently. However, in some extreme special cases, the unseen targets

maybe occur in an unknown domain. Hence in this section, we

describe how the proposed model works in cross-domain stance

detection, i.e. training in one domain dataset and testing in an-

other domain dataset. The results are shown in Table 5. We can see

that, due to the difficulties and challenges of cross-domain stance

detection, the performance is inferior in comparison with cross-

target experiments. Despite all this, our proposed TPDG model

still yields promising performance and achieves outstanding im-

provement compared with all the baselines over all cross-domain
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Table 5: Macro F1-score results of cross-domain stance detec-

tion. WR represents Women’s Rights, AP represents Amer-

ican Politics, Heal. represents Healthcare, Enter. represents
Entertainment. The results with ♮ are retrieved from [2].

Model

Sem16 Wt-wt

WR→AP AP→WR Heal.→Enter. Enter.→Heal.
BiCond [1] 32.2 34.8 37.8

♮
33.6

♮

BERT [3] 40.6 42.5 41.8 40.7

ATT-LSTM [31] 32.5 35.5 40.2 31.3

ASGCN [38] 40.3 39.2 41.3 38.9

CrossNet [34] 39.3 40.6 40.8 37.9

SiamNet [21] 39.8 41.7 40.2
♮

35.3
♮

TPDG (ours) 52.6 49.8 47.4 47.1

Table 6: Macro F1-score results of conventional stance detec-
tion. All represents performance across all targets.

Model

Sem16 Wt-wt

WR AP All Heal. Enter. All
BiCond [1] 44.5 43.0 40.6 66.3 44.5 62.7

BERT [3] 60.6 61.7 60.3 79.0 76.3 79.6

ATT-LSTM [31] 46.0 44.1 40.5 68.4 47.1 66.8

ASGCN [38] 54.7 53.8 52.8 71.2 62.3 68.9

CrossNet [34] 47.1 43.6 40.7 66.8 48.2 67.1

SiamNet [21] 49.8 42.7 41.3 67.4 47.5 67.7

TPDG (ours) 65.2 63.2 61.9 81.1 80.9 81.8

tasks. This indicates that our proposed model is effective in the

more challenging cross-domain stance detection task with the help

of leveraging target-adaptive stance information.

5.3 Generalizability Analysis

In this section, we conduct experiments over all the targets within

domain and across domains to analyze the generalizability perfor-

mance of detecting stance on the whole dataset. The comparison

results are demonstrated in Table 6, here for each model, we feed all

the data with various targets into the model and report the stratified

10-fold cross-validation results. We can observe that, our proposed

model consistently achieves the best performance in all datasets

when concurrently learning stance features for various targets. In-

tuitively, valuable features need to be modeled to predict the stance

labels for different targets in this task. Hence, BERT, which can

leverage contextual semantic information for distinct targets, yields

promising performance among the previous methods. Compared

with BERT, our proposed model produces outstanding improve-

ment in all datasets, which implies that deriving target-adaptive

pragmatics dependencies according to distinct targets with inter-

active graph-aware model could learn more precise target-related

stance expressions for multifarious targets in stance detection.

5.4 Ablation Study

To analyze the impact of different components of the proposed

TPDG model, we conduct experiments over different cross-target

tasks on Wt-wt dataset and report the results in Table 7. We can

Table 7: Experimental results of ablation study.

Model CVS_AET CI_ESRX ANTM_CI AET_HUM
TPDG w/o cross-target 62.3 61.6 69.8 68.3

TPDG w/o in-target 62.9 62.4 70.5 69.1

TPDG w/o pragmatics 64.2 63.8 71.9 70.7

TPDG w/o dependency 64.9 64.2 72.7 71.2

TPDG 66.8 65.6 74.2 73.1
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Figure 3: Impact of the proportion of pragmatics words. In-

target=proportion of pragmatics words from in-target per-

spective, Cross-target=proportion of pragmaticswords from

cross-target perspective.

see that removal of “cross-target” or “in-target” degrades the per-

formance substantially, which indicates that both in-target and

cross-target stance expressions are important in detecting stance

for an unknown target. Noting that model without “dependency”

(dependency tree of the sentence) degrades the performance con-

siderably, and removal of “pragmatics” leads to performance drops

evidently. This implies that only adopting either dependency tree or

pragmatics information can not adequately learn accurate stance ex-

pressions for the target. That is, leveraging target-adaptive pragmat-

ics dependencies with interactive GCN blocks properly improves

the performance of cross-target stance detection.

5.5 Impact of Pragmatics Words

To further demonstrate that pragmatics information of the contex-

tual words can enrich the graph representation towards the target,

we conduct experiments on Wt-wt dataset by employing different

proportions of pragmatics words derived in Section 3.3. We first sort

the words by pragmatics weight, and vary the proportion from 0 to

1, the results are shown in Figure 3. We can see that removal of prag-

matics information (i.e. the proportion is set to 0) performs worst

over all cross-target tasks, which implies that inhibited performance
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Figure 4: Impact of the dataset size of the destination target.

Figure 5: Impact of the number of GCN blocks.

of the model is produced when ignoring pragmatics information

in stance detection. Comparatively, no matter with any proportion

of pragmatics words the performance of our proposed model is

improved, which verifies the significance of target-adaptive prag-

matics information in learning stance expressions of the target.

Noting that adopting both in-target and cross-target contextual

pragmatics information is outstandingly better than only consider-

ing one of both. This further implies that leveraging the pragmatics

information from both in-target and cross-target perspective could

lead to extraordinarily improved stance detection.

5.6 Impact of Destination Target Data Size

As described in Section 3.3, the pragmatics weight might be influ-

enced by the destination target data size. To provide more insights

into the role of word-level target-adaptive pragmatics weight, we

further study the change of stance detection performance over dif-

ferent cross-target tasks with varying unknown target data size

(the proportion is from 0.1 to 1). The comparison results are shown

in Figure 4. Noting that the performance of the baseline (SiamNet)

violently fluctuates over different test data sizes. Comparatively,

although the performance decreased slightly in a small data size

(< 40%), our proposed model (TPDG) achieves outstandingly better

andmore stable performance in different proportions of the test data

size. This verifies that our proposed method of computing word-

level target-adaptive pragmatics weight is applicable for different

sizes of unknown target dataset and improves the performance of

cross-target stance detection.

5.7 Impact of GCN Blocks

To investigate the impact of the interactive GCN block number

on the performance of our proposed model. We vary the block

number from 1 to 8 and demonstrate the results in Figure 5. Noting

that model with 3 GCN blocks performs overall better than other

numbers, and thus we set the number of GCN blocks to 3 in our

model. Model with one GCN block performs unsatisfactorily over all

cross-target tasks, the possible reason maybe inadequate network

structure is insufficient to exploit accurate pragmatics dependencies

for the target in stance detection. In addition, in the cases of the

block number greater than 3, the performance fluctuates with the

increasing number of GCN blocks and essentially tends to decline

when the number of block is greater than 5. This implies that

roughly increasing the number of GCN blocks is vulnerable to

slash the learning ability of the model due to the sharp increase of

the model parameters.

5.8 Case Study

Our pragmatics weight computation is designed for identifying the

roles of words in stance expression for a distinct target from both

in-target and cross-target perspective, which allows us to capture

different significant words paired with the corresponding weights

for the distinct target. Thus we demonstrate some crucial words

paired with their corresponding pragmatics weights derived from

different targets in Table 8. HereCROSSSEM andCROSSWT present

words with cross-target word-level pragmatics weights in Sem16

and Wt-wt dataset, and the others are from in-target word-level

pragmatics weight computation. We can observe that, for in-target

word-level pragmatics weight, whether the words with high-level

weight or the with low-level weight is quite distinct in different

targets, and the words with large pragmatics weights are fundamen-

tally high-related to the target and dominant in stance expressions.

This implies that exclusive pragmatics word sets that are derived

for distinct targets from an in-target perspective can effectively

help the proposed model to deal with the inherent stance expres-

sion of the distinct target. In addition, the words with cross-target

word-level pragmatics weights (both CROSSSEM and CROSSWT)

are almost semantically-rich target-independent opinion words.

More concretely, the stance expression of cross-target words is

generally invariant to different targets, which can be adopted to

derive stance expressions for the unknown target.

To further present how the in-target and cross-target informa-

tion works interactively in stance detection for an unknown target,

we present a case study over a typical instance by visualizing the

in-target and cross-target pragmatics weights of the words and the
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Table 8: Examples of in-target pragmatics weights of words retrieved from the corresponding targets and cross-target prag-

matics weights of words in Feminist Movement domain of Sem16 dataset and in Healthcare domain of Wt-wt dataset. Words

paired with their corresponding pragmatics weights are reported.

FM LA CROSSSEM CVS_AET CI_ESRX ANTM_CI AET_HUM CROSSWT

feminists 1.44 abortion 1.17 people 0.62 cvsaetna 1.08 cigna-express 1.35 antm 1.02 focused 1.01 calling 0.99

feminist 1.15 unborn 1.13 always 0.41 drugstore 1.07 sizable 1.14 rekindle 1.01 bswift 1.00 leading 0.96

feminism 1.09 babies 1.09 rights 0.37 cvs 1.07 overpaying 0.96 skip 1.00 endangers 0.99 investors 0.87

gender 0.96 baby 1.03 they 0.36 thanksgiving 1.07 scrips 0.95 reflect 0.99 controller 0.98 megamergers 0.83

girls 0.93 pregnancy 0.98 family 0.32 disruption 0.99 solicit 0.94 appeals 0.99 nodding 0.97 contracts 0.66

female 0.93 pregnant 0.98 woman 0.32 trends 0.99 broadening 0.93 damages 0.99 seniors 0.97 benefits 0.64

slut 0.92 kids 0.98 good 0.30 prescriptions 0.99 expr 0.94 hates 0.98 aethum 0.97 support 0.61

sexism 0.92 killing 0.97 who 0.28 loyalty 0.98 middleman 0.93 banks 0.98 bailed 0.97 approve 0.58

...... ...... agree 0.28 ...... ...... ...... ...... control 0.47

kids 0.08 feminism 0.07 love 0.28 rejected 0.08 merge 0.03 buying 0.06 failed 0.06 limited 0.44

choose 0.08 girls 0.06 believe 0.25 request 0.07 hearing 0.02 approvals 0.06 analytics 0.06 oppose 0.42

murder 0.07 patriarchy 0.06 free 0.25 regulator 0.07 allowed 0.02 aetna 0.05 corporation 0.05 buyout 0.44

killing 0.04 feminist 0.05 well 0.23 value-based 0.04 cvshealth 0.02 express 0.04 drug 0.04 includes 0.41

pregnant 0.03 female 0.04 sex 0.23 hum 0.02 aetna 0.01 doctor 0.04 independent 0.04 helps 0.37

abortion 0.03 gender 0.03 women 0.18 ci 0.02 advantage 0.01 investor 0.04 express 0.01 concern 0.35

baby 0.03 male 0.03 old 0.12 antm 0.12 anthem 0.01 bought 0.03 esrx 0.01 accepting 0.33

babies 0.02 feminists 0.02 ...... anthem 0.01 humana 0.01 esrx 0.01 cvs 0.01 ......
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Figure 6: Pragmatics weights and attention visualizations of

a typical instance. Values in parentheses are the correspond-

ing pragmatics weights.

attention weights learned by our proposed TPDG model and the

comparison model (SiamNet). The results are demonstrated in Fig-

ure 6. Here the ground-true label of the instance is comment, while
a wrong prediction result support is obtained by SiamNet since it

pays excessive attention to the word “merger” that potentially ex-

pressing positive stance. Noting that, for our method, the in-target

pragmatics weights of several target-related words are large, and

the pragmatics information produced by the word “merger” is still
nonnegligible from the in-target perspective. However, the slight in-

fluence of “merger” could be ignored in the cross-target pragmatics

dependency graph owing to the small value of pragmatics weight.

Thus our proposed model focuses on genuinely significant words

and captures a correct label. This vividly indicates that interactively

leveraging both in-target and cross-target pragmatics information

could modify the crucial stance-related clues of stance expression

towards the target, so as to improve the performance of detecting

stance for the unknown target.

6 CONCLUSION

In this paper, we present a novel approach that automatically iden-

tifies and adapts the target-dependent and target-independent roles

of a word towards a target in cross-target stance detection. Specifi-

cally, we explore a novel solution of constructing target-adaptive

pragmatics dependency graphs for each sentence from both in-

target and cross-target perspective to capture the accurate role

of contextual words in stance expression. Subsequently, a novel

graph-aware model with interactive GCN blocks is proposed to

leverage the contextual pragmatics dependencies towards the tar-

get. Based on it, valuable target-adaptive stance expressions could

be learned for the stance detection of unknown targets even if un-

seen domains. Experimental results onmultiple benchmark datasets

and multiple cross-target tasks show that our proposed model can

significantly outperform state-of-the-art methods in cross-target

stance detection.
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